Pioneering Green Hydrogen

H2heat
H2Heat Plans and Prepares for Transformation, #Now is the time
H2Heat Plans and Prepares for Transformation, #Now is the time 1024 1024 H2Heat Project

The planning and preparation phase of the H2HEAT project is a vital step in bringing this transformative vision to life. In this blog post, we will delve into the project’s objectives, key tasks, and the remarkable journey that lies ahead.

Setting the Stage of H2Heat

The H2HEAT project’s planning and preparation is driven by a set of core goals, each essential for its successful execution:

1. Overall Detailed Project Plan

At the heart of the project lies a crafted plan that not only outlines the journey ahead but also provides a detailed budget and a timeline that keeps everyone aligned and accountable.

2. Consenting and Permitting

Every significant endeavor requires the green light from the powers that be. H2HEAT is committed to securing all the necessary permissions and consents to ensure a smooth and lawful progression.

3. Environmental Impact Assessment

With a strong emphasis on environmental responsibility, H2HEAT conducts a comprehensive Environmental Impact Assessment (EIA). Continuous monitoring is part of the commitment to minimize ecological harm.

4. Resource and Demand Forecasting

Efficiency is key, and that’s why the project meticulously analyzes and forecasts energy demand, ensuring resources are used optimally.

5. Site Survey and Techno-Economic Analysis

To maximise efficiency and performance, H2HEAT partners with PLOCAN to evaluate the suitability of the project site. Detailed techno-economic analysis guarantees an optimized configuration.

6. Health & Safety Strategy

Safety is a top priority. A thorough Health and Safety (H&S) strategy is developed and executed, covering all aspects of the project to protect the well-being of the team.

H2Heat

Tasks at Hand: Driving Sustainability

Let’s zoom in on the specific tasks that are steering the H2HEAT project towards success:

Project Planning: The project plan is not static; it’s continuously reviewed and updated as progress is made. A detailed budget is created based on a techno-economic analysis and project requirements.

Consenting and Permitting: This task involves obtaining a range of permits, including administrative authorisation, environmental assessments, and manufacturing licenses. The project also explores the possibility of grid connection if needed.

Site Surveys and Resource Assessment: Evaluating the project site near Las Palmas Gran Canaria is crucial. Historical weather data and energy demand forecasts guide decision-making.

CHUIMI Hospital Analysis: A comprehensive review of CHUIMI hospital’s heat requirements is conducted, ensuring that the project aligns with current usage, seasonal variations, and equipment needs.

Preliminary Designs and Specifications: A high-level system design study is carried out, covering renewable energy sources, electrolysis, infrastructure, hydrogen production, and heat distribution. This study helps optimize the system layout and estimate costs.

Environmental and Permitting Activities: This task encompasses a full Environmental Impact Assessment (EIA), administrative procedures, and measures to mitigate environmental impact. Ongoing environmental surveillance is also established.

Health and Safety (H&S) Plan: Safety is paramount. A comprehensive H&S plan includes risk assessment, scenario development, emergency procedures, personnel designation, and a training and communication plan.

Life Cycle Analysis (LCA): A standardized methodology is used to assess the project’s impact on environmental and socio-economic factors, including circularity and the project’s location.

Environmental Impact Monitoring and Reporting: The project continuously monitors its supply chain, tracking progress in reducing carbon emissions and reporting on compliance with the EIA baseline report.

The H2HEAT project is not just about innovation; it’s about pioneering a sustainable and eco-conscious future.

H2Heat
What is the H2Heat Project and How Does it Help the Climate Change?
What is the H2Heat Project and How Does it Help the Climate Change? 1024 577 H2Heat Project

The H2HEAT project is grabbing attention by showcasing creative ways to harness renewable energy and transform it into renewable energy carriers in the fight for a better, more sustainable future. With a focus on cost-effectiveness, energy efficiency, and environmental sustainability, this revolutionary effort aims to revolutionise the energy landscape.

Green Hydrogen Production

H2HEAT will showcase the production of hydrogen (H2) through the conversion of renewable energy (RE) supplied by Esteyco Offshore Wind (OSW). This transformation will be achieved using cutting-edge technology, particularly the Stargate electrolyser installed in a dedicated H2 facility. Key Performance Indicators (KPIs) related to wind energy efficiencies, cabling infrastructure, energy loss reduction, and H2 production will be rigorously tested in Work Package 4 (WP4). The integration of a sophisticated control system developed by NeoDyne will ensure maximum efficiency by accounting for RE variability and demand/supply balancing.

Sustainable Heating Solution

In an effort to reduce carbon emissions and enhance energy efficiency, H2HEAT will demonstrate the use of hydrogen (H2) for heating applications at the CHIUMI hospital. This hospital currently consumes a substantial 5000MW/year for heating purposes. By substituting traditional heating fuels with H2 from a combined Heat and Power (CHP) system or Heat Pump, the hospital aims to achieve up to 90% reduction in its heating fuel consumption. WP4 will evaluate the combustion efficiency and other key specifications.

Environmental Sustainability

One of the primary goals of the H2HEAT project is to achieve near-zero carbon emissions throughout the end-to-end green H2 heating process. Drawing on the extensive experience of our partner organizations in implementing green energy solutions, we are committed to adhering to European Environmental and Social standards and taxonomy principles. Environmental and Social Impact Assessments (ESIA) will be conducted, along with comprehensive Life Cycle Analysis.

WP1 will closely monitor the entire project, supply chains, and value chains, focusing on pollution prevention, biodiversity, climate change, and ecosystems. Copernicus data and products will be leveraged for in-depth environmental impact analysis.

Socioeconomic Sustainability

H2HEAT recognizes the importance of socioeconomic sustainability in its heating supply and value chains. This will be achieved through a Quadruple Helix approach in Objective 5 (WP7), emphasizing public engagement, community involvement, and responsible research and innovation (RRI) principles. Collaboration with the local community and Gran Canaria authorities will be initiated at an early stage. The project will also prioritize the use of local materials, services, and labor whenever possible. Education and knowledge transfer activities will ensure that the Las Palmas and wider Gran Canaria community is informed, educated, and actively participates in the Green Energy Valley concept and H2HEAT.

Achieving Technology Readiness Level 7

The H2HEAT project aims to achieve Technology Readiness Level 7 (TRL7) by the end of the project duration. This milestone will be reached through the comprehensive demonstration of the H2HEAT technology in WP4 within Gran Canaria’s operational environment. The project will undergo rigorous monitoring for a 24-month period, ensuring that all objectives are met and that the technology is ready for real-world applications. WP3 will develop a detailed test strategy, covering Factory, Site, and Demonstration Acceptance testing.

Cross-cutting Priorities: Artificial Intelligence and Digital Agenda

H2HEAT will lead the way in designing and implementing a full control system, including a smart Energy Management System (EMS), Demand Side Management (DSM) system, and Supervisory Control and Data Acquisition (SCADA) system. This integrated approach will facilitate demand response, modeling, and forecasting, ensuring energy efficiency in the face of variable energy supply. The system will also enable digital monitoring, analysis, and reporting during the demonstration phase, positioning H2HEAT at the forefront of the digital agenda.

The H2HEAT project represents a significant step toward a sustainable and eco-friendly future, where renewable energy is harnessed efficiently, and innovative solutions are implemented to address our heating needs. Stay tuned for updates as H2HEAT paves the way for a cleaner, greener energy landscape.

EU
This is how the EU fights for a Sustainable Future
This is how the EU fights for a Sustainable Future 1024 768 H2Heat Project

In a world grappling with the dire consequences of climate change, the European Union (EU) has set an ambitious and inspiring target: to achieve net-zero greenhouse gas emissions by the year 2050. This commitment reflects the EU’s dedication to leading the charge in mitigating climate change, fostering sustainable development, and ensuring a brighter future for generations to come. In this blog, we’ll explore the EU’s net-zero emissions goal, its significance, and the strategies it is employing to make it a reality.

Understanding Net-Zero Emissions

Net-zero emissions, often referred to as carbon neutrality, mean that a region or entity is balancing the amount of greenhouse gases it emits with an equivalent amount removed from the atmosphere. Achieving net-zero emissions doesn’t imply eliminating all emissions; instead, it involves reducing emissions as much as possible and offsetting the remaining emissions through various means, such as carbon capture and removal technologies or reforestation projects.

The Urgency of the Climate Crisis

The EU’s commitment to net-zero emissions comes at a critical time. The impacts of climate change, including extreme weather events, rising sea levels, and disruptions to ecosystems, are already being felt worldwide. Urgent action is required to limit global warming to well below 2 degrees Celsius above pre-industrial levels, as outlined in the Paris Agreement. Net-zero emissions by 2050 is a crucial milestone in achieving this goal.

The EU’s Leadership Role

The EU has long been at the forefront of international efforts to combat climate change. Its Green Deal, announced in December 2019, lays out a comprehensive plan to make the EU the world’s first climate-neutral continent. The net-zero emissions goal is a cornerstone of this initiative, demonstrating the EU’s leadership in environmental stewardship.

Strategies for Achieving Net-Zero Emissions

Energy Efficiency

Improving energy efficiency in industries, buildings, and transportation is a key strategy. This includes renovating buildings to be more energy-efficient, promoting electric vehicles, and implementing stringent energy efficiency standards.

Transition to Renewable Energy

The EU is investing heavily in renewable energy sources like wind, solar, and hydropower. These sources provide clean and sustainable alternatives to fossil fuels, reducing emissions from the energy sector.

Carbon Pricing

The EU has implemented a carbon pricing mechanism through its Emissions Trading System (ETS). This incentivizes industries to reduce emissions and invest in cleaner technologies.

Reforestation and Land Use

The EU is committed to preserving and restoring forests and adopting sustainable agricultural practices. Forests act as carbon sinks, helping to offset emissions.

Innovation and Research

The EU is funding research and innovation in green technologies and solutions, ensuring the development of cutting-edge tools to reduce emissions. Just Transition: Recognizing the need for a fair transition, the EU is working to support regions and industries heavily reliant on fossil fuels in their shift toward sustainable alternatives.

Challenges and Obstacles

The journey to net-zero emissions is not without challenges. It requires significant investments, changes in behavior, and overcoming political hurdles. Industries with high emissions, such as heavy manufacturing and aviation, face particular difficulties in transitioning to low-carbon alternatives. The clock is ticking, and the EU’s determination to reach net-zero emissions is a crucial step toward preserving our planet for future generations.

If you want to find out more about the H2Heat project, follow us on LinkedIn, and X!

H2Heat Pioneering Green Hydrogen for Sustainable Heating Solutions
H2Heat Pioneering Green Hydrogen for Sustainable Heating Solutions 1024 538 H2Heat Project

The H2Heat project, which aims to showcase the potential of converting green hydrogen (H2) for sustainable heating solutions, has started its first phase. 

The H2HEAT project, starting in September is set to revolutionise the way we generate and utilise energy by converting heat into the commercial building’s heating and hot water systems, for example in one of the hospitals in Gran Canaria. This may reduce CO2 emissions by over fifty percent, significantly contributing to their sustainability goals. As the Canary Islands embrace locally-produced H2 from renewable energy sources, H2Heat’s impact is present throughout the regional economy.

The core of the project lies in the strategic partnership between the Canary Island Health Service (SCS) and coordinator PLOCAN. This alliance lays the groundwork for the entire project, driven by a shared commitment to renewable energy generation and hospital facility decarbonisation. Aligned with the ambitious  ‘Health Zer0 net Emissions Strategy 2030’ of the Government of Canary Islands, this collaboration holds the potential to reshape energy practices within the healthcare sector. The H2Heat extends its reach as a contributor to the green H2 supply and value chains, by creating transformative innovations. Project consortium of 11 partners bring diverse expertise, ensure realisation of technical goals, reduce the total cost of ownership for consumers, and create replicable business models.

Beyond the tech: Engaging Stakeholders

As awareness is pivotal for success for any organisation, H2Heat takes a comprehensive approach. Industry, research, government, civil society and investors – aim to foster collaboration and co-creation. As the curtains rise on the H2Heats project’s kick-off, the promise of a greener, sustainable future takes centre stage. Through collaboration, innovation and strategic alignment, H2Heat stands as a testament for the capacity to reshape the energy landscape for the better.

Challenges

Experience from past EU funded initiatives show that technological challenges are often not the primary concert when it comes to adopting green hydrogen (H2), in particular for heating and energy applications. 

Instead, a lack of awareness among essential stakeholders poses a greater challenge. By identifying opportunities, fostering collaboration and understanding strategies required for large scale implementation can be challenging by the awareness gap.

With full recognition of the challenges, H2HEAT is strategically focused on engaging on the “Quadruple Helix of stakeholder” which encompass investors, civil societies, research institutions, governments and industry experts. By fostering collaboration, H2HEAT aims to bridge the gap between potential and realisation – ensuring the project’s impact on sustainability and green energy globally.

If you want to find out more about the H2Heat project, follow us on LinkedIn, and X!

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Our Privacy Policy can be read here.

Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.